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Regression and t Tests
• Linear regression with a binary predictor (two 

groups) corresponds to the familiar t tests
– Classical linear regression: Two sample t test which 

presumes equal variances (exactly the same)
– Robust standard error estimates: Two sample t test 

which allows unequal variances (nearly the same)
– Identified clusters with robust standard error 

estimates: Paired t test (nearly the same)
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Relationship Between
Linear Regression

and Correlation
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Regression and Correlation
• Pearson’s correlation coefficient is intimately related to 

linear regression
–Correlation treats Y and X symmetrically, but we can relate it to 
the model of E( Y | X ) as a function of X
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Regression and Correlation
• More interpretable formulation of r :
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Regression and Correlation

• Correlation tends to increase in absolute 
value as
– The absolute value of the slope of the line 

increases
– The variance of data decreases within groups 

that share a common value of X
– The variance of X increases

8

Example: Regression and 
Correlation
• Correlation between height and age in elderly

– More extreme within each sex: lower Var (Y | X)
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Example: Regression and 
Correlation
• Correlation between weight and height in elderly

–More extreme in combined sexes: higher Var (X)

10

Correlation: Science vs
Statistics
• Scientific use of correlation

– It should be noted that
• the slope between X and Y is of scientific interest
• the variance of Y|X=x is partly of scientific interest, 

but it can be affected by restricting sampling to 
certain values of another variable

– E.g., var (Height | Age) is less in males than when both 
sexes are included

• the variance of X is often set by study design
– This is often not of scientific interest
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Correlation: Science vs
Statistics
• Ramifications for use in scientific literature

– Two independent studies of the same 
phenomenon might estimate very similar 
slopes, but different correlations solely due to 
study design

– Height vs Age
• Males:       Slope= -0.23         Corr= -0.21
• Both:         Slope= -0.20         Corr= -0.11
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Inference for Correlation

• Hypothesis tests for a nonzero correlation 
are EXACTLY the same as a test for a 
nonzero slope in classical linear 
regression
– Interestingly:

• The statistical significance of a given value of r 
depends only on the sample size

– Correlation is far more of a statistical than a scientific 
measure
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Simple Linear Regression on Log 
Transformed Data:Modeling the 

Geometric Mean

14

Regression on Geometric 
Means
• Geometric means of distributions are 

typically modeled using linear regression 
on log transformed data
– The geometric mean is a common choice of 

population parameters for inference when a 
positive response variable is continuous, and

• we are interested in multiplicative models,
• we desire to downweight outliers, and/or
• the standard deviation of response in a group is 

proportional to the mean
– “Error is +/- 10%” instead of “Error is +/- 10”
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Regression on Geometric 
Means
• Modeling of geometric mean of response Y on 

predictor X
– Linear regression on log transformed Y

• (I am using natural log)
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Regression on Geometric 
Means
• Restated model as log link for geometric mean
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Regression on Geometric 
Means
• Interpretation of regression parameters by back-

transforming model
– Exponentiation is inverse of log
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Regression on Geometric 
Means
• Interpretation of the model

– Geometric mean when predictor is 0
• Found by exponentiation of the intercept from the linear 

regression on log transformed data: exp(β0)
– Ratio of geometric means between groups differing in 

the value of the predictor by 1 unit
• Found by exponentiation of the slope from the linear 

regression on log transformed data: exp(β1)
– Confidence intervals for geometric mean and ratios 

found by exponentiating the CI for regression 
parameters
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Example

• Trends in FEV with height
– FEV data set

• A sample of 654 healthy children
• Lung function measured by forced expiratory 

volume (FEV)
– maximal amount of air expired in 1 second

• Question: How does FEV differ across height 
groups

20

Scatterplot of FEV versus 
Height
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Example
• Characterization of scatterplot

– Detection of outliers
• None obvious

– Trends in FEV across groups
• FEV tends to be larger for taller children

– Second order trends
• Curvilinear increase in FEV with height

– Variation within height groups
• “heteroscedastic”: unequal variance across groups

– mean-variance relationship: higher variation in groups with 
higher FEV

22

Plot of Mean FEV versus Height
sort height
by height: egen mfev = mean (fev)
graph fev mfev height, s(oT) c(.l) j(1)

height

 fev  mfev
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height

 fev  mfev
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Example
• Choice of geometric mean for basis of model

– Prior to looking at the data, we have good scientific 
justification for using geometric mean

• FEV is a volume
• Height is a linear dimension

– Each dimension of lung size is likely proportional to height
• Standard deviation likely proportional to height
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Plot of Mean FEV versus Height
regress fev height
predict ffev
ksm fev height, lowess gen(smfev)
graph fev mfev ffev smfev height, s(oTdp) 
c(.lll)

height

 fev  mfev
 Fitted values  smfev

46 74

.638197

5.793

height

 fev  mfev
 Fitted values  smfev

46 74

.638197
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Example

• Modeling of log transformed FEV
– Science dictates any of the models

• Statistical preference for transformation of 
response

– May transform to equal variance across groups
– “homoscedasticity” allows easier inference

• Statistical preference for log transformation
– Easier interpretation: multiplicative model
– Compare groups using ratios

26

Plot of log (FEV) versus log 
(Height)
g logfev= log(fev)
g loght= log(height)
regress logfev loght
predict flfev
ksm logfev loght, lowess gen(smlfev)
graph fev flfev smlfev loght, s(oTd) c(.ll)

loght

 logfev  Fitted values
 smlfev

3.82864 4.30407

-.234457

1.75665

loght

 logfev  Fitted values
 smlfev

3.82864 4.30407

-.234457

1.75665
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Estimation of Regression Model
regress logfev loght, robust     

Regression with robust standard errors                 
Number of obs =     654

F(  1,   652) = 2130.18
Prob > F      =  0.0000
R-squared     =  0.7945
Root MSE      =   .1512
----------------------------------------------------------

|        Robust
logfev |  Coef. StErr     t   P>|t|      [95% CI]

---------+------------------------------------------------
loght |   3.12  .068  46.15  0.000   2.99     3.26
_cons | -11.92  .278 -42.90  0.000 -12.47   -11.38

----------------------------------------------------------
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Log Transformed Predictors
• Interpretation of log transformed predictors with 

log link function
– Log link function used to model the geometric mean

• Exponentiated slope estimates ratio of geometric means 
across groups

– Compare groups with a k-fold difference in their 
measured predictors with respect to geometric mean

• Estimated ratio of geometric means

( )( ) 1
1logexp βkβk =×( )( ) 1
1logexp βkβk =×
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Interpretation of Stata Output

• Scientific interpretation of the slope

– Estimated ratio of geometric mean FEV for 
two groups differing by 10% in height (1.1-fold 
difference in height)

• Exponentiate 1.1 to the slope: 1.13.12 =1.35
– Group that is 10% taller is estimated to have a geometric 

mean FEV that is 1.35 times higher (35% higher)

[ ] iii loghtloghtFEV ×+−= 12.39.11GM log   [ ] iii loghtloghtFEV ×+−= 12.39.11GM log   
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Transformation of the Predictor
• Transformations of the predictor are typically 

chosen according to whether the model likely 
follows a straight line relationship
– Linearity (“model fit”) is necessary to predict the value 

of the parameter in individual groups
• Linearity is not necessary to estimate existence of 

association
• Linearity is not necessary to estimate a “first order trend” in 

the parameter across groups having the sampled distribution 
of the predictor

• (Inference about these two questions will tend to be 
conservative if linearity does not hold)
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Transformation of the Predictor
• It is rare that we truly know which 

transformation of the predictor would 
provide the best “linear” fit
– As always, there is a danger in using the data 

to estimate the best transformation to use
• If there is no association of any kind between the 

response and the predictor, a “linear” fit (with a 
zero slope) is the correct one

• Trying to detect a transformation is thus an 
informal test for an association

– Multiple testing procedures inflate the type I error

32

Transformation of the Predictor

• It is best to choose the transformation of 
the predictor on scientific grounds
– However, it is often the case that many 

functions are well approximated by a straight 
line over a small range of the data

• Example: In the modeling of FEV as a function of 
height, the logarithm of height is approximately 
linear over the range of heights sampled
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Transformation of the Predictor
• Plot of log (Height) versus Height for FEV data 

with superimposed best fitting line
lo

gh
t

height

 loght  Fitted values

46 74

3.82864

4.32274

lo
gh

t

height

 loght  Fitted values

46 74

3.82864

4.32274
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Transformation of the Predictor
• It is thus often the case that we can 

choose to use an untransformed predictor 
even when science would suggest a 
nonlinear association
– This can have advantages when interpreting 

the results of the analysis
• E.g., it is far more natural to compare heights by 

differences than by ratios
– Chances are we would characterize two children as 

differing by 4 inches in height rather than as the 44 inch 
child as being 10% taller than the 40 inch child
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Transformation of the Predictor

• Looking ahead to multiple regression: The 
relative importance of having the “true” 
transformation for a predictor depends on 
the statistical role
– Predictor of Interest
– Effect Modifiers
– Confounders
– Precision variables

36

Transformation of the Predictor
• Transformations of the predictor of interest 

should be dictated by the scientific question, 
which in turn depends on your level of previous 
knowledge about any association between 
response and POI
– In general, don’t worry about modeling the exact 

relationship before you have even established that 
there is an association (binary search)

• Searching for the best fit can inflate the type I error
• Make most accurate, precise inference about the presence of 

an association first
– Exploratory analyses can suggest models for future analyses



Applied Regression Analysis, June, 2003 June 24, 2003

(c) 2002, 2003, Scott S. Emerson, M.D., 
Ph.D. Part 2:19

37

Transformation of the Predictor
• Modeling of effect modifiers is invariably 

just to test for existence of the interaction
– We rarely have a lot of precision to answer 

questions in subgroups of the data
– Patterns of interaction can be so complex that 

it is unlikely that we will really capture the 
interactions across all subgroups in a single 
model

• Typically we restrict future studies to analyses 
treating subgroups separately
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Transformation of the Predictor
• When modeling confounding variables, it is 

important to have an appropriate model of the 
association between the confounder and the 
response
– Failure to accurately model the confounder means 

that some residual confounding will exist
– However, searching for the best model may inflate the 

type I error for inference about the predictor of interest 
by overstating the precision of the study

• Luckily, we rarely care about inference for the confounder, so 
we are free to use inefficient means of adjustment, e.g., 
stratified analyses



Applied Regression Analysis, June, 2003 June 24, 2003

(c) 2002, 2003, Scott S. Emerson, M.D., 
Ph.D. Part 2:20

39

Transformation of the Predictor
• When modeling precision variables, it is 

rarely worth the effort to use the “best” 
transformation
– We usually capture the largest part of the 

added precision with crude models
– We generally do not care about estimating 

associations between the response and the 
precision variable

• Most often, precision variables represent known 
effects on response


